1 #ifndef VIENNACL_LINALG_BICGSTAB_HPP_
2 #define VIENNACL_LINALG_BICGSTAB_HPP_
57 : tol_(tol), abs_tol_(0), iterations_(max_iters), iterations_before_restart_(max_iters_before_restart) {}
65 void abs_tolerance(
double new_tol) {
if (new_tol >= 0) abs_tol_ = new_tol; }
77 double error()
const {
return last_error_; }
79 void error(
double e)
const { last_error_ = e; }
89 mutable double last_error_;
97 template<
typename MatrixT,
typename NumericT>
103 void *monitor_data = NULL)
124 std::vector<NumericT> host_inner_prod_buffer(inner_prod_buffer.
size());
130 NumericT residual_norm = norm_rhs_host;
131 inner_prod_buffer[0] = norm_rhs_host * norm_rhs_host;
149 inner_prod_buffer, buffer_size_per_vector, 3*buffer_size_per_vector);
169 inner_prod_buffer, buffer_size_per_vector, 5*buffer_size_per_vector);
176 inner_prod_buffer, buffer_size_per_vector, 4*buffer_size_per_vector);
182 typedef typename std::vector<NumericT>::difference_type difference_type;
184 r_dot_r0 = std::accumulate(host_inner_prod_buffer.begin(), host_inner_prod_buffer.begin() + difference_type( buffer_size_per_vector),
NumericT(0));
185 As_dot_As = std::accumulate(host_inner_prod_buffer.begin() + difference_type( buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(2 * buffer_size_per_vector),
NumericT(0));
186 As_dot_s = std::accumulate(host_inner_prod_buffer.begin() + difference_type(2 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(3 * buffer_size_per_vector),
NumericT(0));
187 Ap_dot_r0 = std::accumulate(host_inner_prod_buffer.begin() + difference_type(3 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(4 * buffer_size_per_vector),
NumericT(0));
188 As_dot_r0 = std::accumulate(host_inner_prod_buffer.begin() + difference_type(4 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(5 * buffer_size_per_vector),
NumericT(0));
189 s_dot_s = std::accumulate(host_inner_prod_buffer.begin() + difference_type(5 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(6 * buffer_size_per_vector),
NumericT(0));
191 alpha = r_dot_r0 / Ap_dot_r0;
192 beta = - As_dot_r0 / Ap_dot_r0;
193 omega = As_dot_s / As_dot_As;
195 residual_norm = std::sqrt(s_dot_s -
NumericT(2.0) * omega * As_dot_s + omega * omega * As_dot_As);
196 if (monitor && monitor(result, std::fabs(residual_norm / norm_rhs_host), monitor_data))
208 r0star, inner_prod_buffer, buffer_size_per_vector);
212 tag.
error(residual_norm / norm_rhs_host);
218 template<
typename NumericT>
224 void *monitor_data = NULL)
231 template<
typename NumericT>
237 void *monitor_data = NULL)
245 template<
typename NumericT>
251 void *monitor_data = NULL)
259 template<
typename NumericT>
265 void *monitor_data = NULL)
272 template<
typename NumericT>
278 void *monitor_data = NULL)
295 template<
typename MatrixT,
typename VectorT>
301 void *monitor_data = NULL)
305 VectorT result = rhs;
308 VectorT residual = rhs;
310 VectorT r0star = rhs;
316 CPU_NumericType ip_rr0star = norm_rhs_host * norm_rhs_host;
317 CPU_NumericType beta;
318 CPU_NumericType alpha;
319 CPU_NumericType omega;
321 CPU_NumericType new_ip_rr0star = 0;
322 CPU_NumericType residual_norm = norm_rhs_host;
327 bool restart_flag =
true;
334 residual = rhs - residual;
338 ip_rr0star *= ip_rr0star;
339 restart_flag =
false;
347 s = residual - alpha*tmp0;
353 result += alpha * p + omega * s;
354 residual = s - omega * tmp1;
358 if (monitor && monitor(result, std::fabs(residual_norm / norm_rhs_host), monitor_data))
363 beta = new_ip_rr0star / ip_rr0star * alpha/omega;
364 ip_rr0star = new_ip_rr0star;
366 if ( (ip_rr0star <= 0 && ip_rr0star >= 0)
367 || (omega <= 0 && omega >= 0)
376 p = residual + beta * p;
380 tag.
error(residual_norm / norm_rhs_host);
398 template<
typename MatrixT,
typename VectorT,
typename PreconditionerT>
402 PreconditionerT
const & precond,
404 void *monitor_data = NULL)
408 VectorT result = rhs;
411 VectorT residual = rhs;
412 VectorT r0star = residual;
417 VectorT p = residual;
421 CPU_NumericType beta;
422 CPU_NumericType alpha;
423 CPU_NumericType omega;
424 CPU_NumericType new_ip_rr0star = 0;
425 CPU_NumericType residual_norm = norm_rhs_host;
430 bool restart_flag =
true;
437 residual = rhs - residual;
438 precond.apply(residual);
442 ip_rr0star *= ip_rr0star;
443 restart_flag =
false;
452 s = residual - alpha*tmp0;
459 result += alpha * p + omega * s;
460 residual = s - omega * tmp1;
463 if (monitor && monitor(result, std::fabs(residual_norm / norm_rhs_host), monitor_data))
470 beta = new_ip_rr0star / ip_rr0star * alpha/omega;
471 ip_rr0star = new_ip_rr0star;
480 p = residual + beta * p;
486 tag.
error(residual_norm / norm_rhs_host);
495 template<
typename MatrixT,
typename VectorT,
typename PreconditionerT>
496 VectorT
solve(MatrixT
const & matrix, VectorT
const & rhs,
bicgstab_tag const & tag, PreconditionerT
const & precond)
507 template<
typename IndexT,
typename NumericT,
typename PreconditionerT>
508 std::vector<NumericT>
solve(std::vector< std::map<IndexT, NumericT> >
const & A, std::vector<NumericT>
const & rhs,
bicgstab_tag const & tag, PreconditionerT
const & precond)
518 std::vector<NumericT> result(vcl_result.
size());
529 template<
typename MatrixT,
typename VectorT>
537 template<
typename VectorT>
545 template<
typename MatrixT,
typename PreconditionerT>
546 VectorT
operator()(MatrixT
const & A, VectorT
const & b, PreconditionerT
const & precond)
const
551 mod_rhs = b - mod_rhs;
552 VectorT y =
detail::solve_impl(A, mod_rhs, tag_, precond, monitor_callback_, user_data_);
553 return init_guess_ + y;
559 template<
typename MatrixT>
560 VectorT
operator()(MatrixT
const & A, VectorT
const & b)
const
580 monitor_callback_ = monitor_fun;
581 user_data_ = user_data;
590 bool (*monitor_callback_)(VectorT
const &,
numeric_type,
void *);
Sparse matrix class using a hybrid format composed of the ELL and CSR format for storing the nonzeros...
vcl_size_t max_iterations_before_restart() const
Returns the maximum number of iterations before a restart.
T norm_2(std::vector< T, A > const &v1)
Generic interface for the l^2-norm. See viennacl/linalg/vector_operations.hpp for implementations...
bicgstab_tag(double tol=1e-8, vcl_size_t max_iters=400, vcl_size_t max_iters_before_restart=200)
The constructor.
void abs_tolerance(double new_tol)
Sets the absolute tolerance.
Generic size and resize functionality for different vector and matrix types.
Generic interface for matrix-vector and matrix-matrix products. See viennacl/linalg/vector_operations...
viennacl::vector< NumericT > solve_impl(viennacl::compressed_matrix< NumericT > const &A, viennacl::vector< NumericT > const &rhs, bicgstab_tag const &tag, viennacl::linalg::no_precond, bool(*monitor)(viennacl::vector< NumericT > const &, NumericT, void *)=NULL, void *monitor_data=NULL)
Overload for the pipelined CG implementation for the ViennaCL sparse matrix types.
double error() const
Returns the estimated relative error at the end of the solver run.
void clear(VectorType &vec)
Generic routine for setting all entries of a vector to zero. This is the version for non-ViennaCL obj...
This file provides the forward declarations for the main types used within ViennaCL.
viennacl::enable_if< viennacl::is_stl< typename viennacl::traits::tag_of< VectorT1 >::type >::value, typename VectorT1::value_type >::type inner_prod(VectorT1 const &v1, VectorT2 const &v2)
bicgstab_solver(bicgstab_tag const &tag)
double abs_tolerance() const
Returns the absolute tolerance.
Generic interface for the computation of inner products. See viennacl/linalg/vector_operations.hpp for implementations.
double tolerance() const
Returns the relative tolerance.
VectorT solve(MatrixT const &matrix, VectorT const &rhs, bicgstab_tag const &tag, PreconditionerT const &precond)
void pipelined_bicgstab_vector_update(vector_base< NumericT > &result, NumericT alpha, vector_base< NumericT > &p, NumericT omega, vector_base< NumericT > const &s, vector_base< NumericT > &residual, vector_base< NumericT > const &As, NumericT beta, vector_base< NumericT > const &Ap, vector_base< NumericT > const &r0star, vector_base< NumericT > &inner_prod_buffer, vcl_size_t buffer_chunk_size)
Performs a joint vector update operation needed for an efficient pipelined BiCGStab algorithm...
VectorT prod(std::vector< std::vector< T, A1 >, A2 > const &matrix, VectorT const &vector)
vcl_size_t size(VectorType const &vec)
Generic routine for obtaining the size of a vector (ViennaCL, uBLAS, etc.)
Sparse matrix class using the ELLPACK format for storing the nonzeros.
iterator begin()
Returns an iterator pointing to the beginning of the vector (STL like)
A tag class representing the use of no preconditioner.
VectorT operator()(MatrixT const &A, VectorT const &b) const
Sparse matrix class using the sliced ELLPACK with parameters C, .
Extracts the underlying context from objects.
void set_monitor(bool(*monitor_fun)(VectorT const &, numeric_type, void *), void *user_data)
Sets a monitor function pointer to be called in each iteration. Set to NULL to run without monitor...
bicgstab_tag const & tag() const
Returns the solver tag containing basic configuration such as tolerances, etc.
viennacl::vector< NumericT > pipelined_solve(MatrixT const &A, viennacl::vector_base< NumericT > const &rhs, bicgstab_tag const &tag, viennacl::linalg::no_precond, bool(*monitor)(viennacl::vector< NumericT > const &, NumericT, void *)=NULL, void *monitor_data=NULL)
Implementation of a pipelined stabilized Bi-conjugate gradient solver.
vcl_size_t max_iterations() const
Returns the maximum number of iterations.
Generic clear functionality for different vector and matrix types.
T::ERROR_CANNOT_DEDUCE_CPU_SCALAR_TYPE_FOR_T type
void pipelined_bicgstab_prod(MatrixT const &A, vector_base< NumericT > const &p, vector_base< NumericT > &Ap, vector_base< NumericT > const &r0star, vector_base< NumericT > &inner_prod_buffer, vcl_size_t buffer_chunk_size, vcl_size_t buffer_chunk_offset)
Performs a joint vector update operation needed for an efficient pipelined CG algorithm.
void set_initial_guess(VectorT const &x)
Specifies an initial guess for the iterative solver.
Implementations of specialized routines for the iterative solvers.
viennacl::context context(T const &t)
Returns an ID for the currently active memory domain of an object.
viennacl::result_of::cpu_value_type< VectorT >::type numeric_type
Helper meta function for retrieving the main RAM-based value type. Particularly important to obtain T...
void copy(std::vector< NumericT > &cpu_vec, circulant_matrix< NumericT, AlignmentV > &gpu_mat)
Copies a circulant matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU) ...
void error(double e) const
Sets the estimated relative error at the end of the solver run.
size_type size() const
Returns the length of the vector (cf. std::vector)
vcl_size_t iters() const
Return the number of solver iterations:
void pipelined_bicgstab_update_s(vector_base< NumericT > &s, vector_base< NumericT > &r, vector_base< NumericT > const &Ap, vector_base< NumericT > &inner_prod_buffer, vcl_size_t buffer_chunk_size, vcl_size_t buffer_chunk_offset)
Performs a joint vector update operation needed for an efficient pipelined CG algorithm.
void iters(vcl_size_t i) const
A tag for the stabilized Bi-conjugate gradient solver. Used for supplying solver parameters and for d...
iterator end()
Returns an iterator pointing to the end of the vector (STL like)
A collection of compile time type deductions.
VectorT operator()(MatrixT const &A, VectorT const &b, PreconditionerT const &precond) const
A sparse square matrix, where entries are stored as triplets (i,j, val), where i and j are the row an...
void fast_copy(const const_vector_iterator< SCALARTYPE, ALIGNMENT > &gpu_begin, const const_vector_iterator< SCALARTYPE, ALIGNMENT > &gpu_end, CPU_ITERATOR cpu_begin)