ViennaCL - The Vienna Computing Library  1.7.1
Free open-source GPU-accelerated linear algebra and solver library.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ell_matrix.hpp
Go to the documentation of this file.
1 #ifndef VIENNACL_ELL_MATRIX_HPP_
2 #define VIENNACL_ELL_MATRIX_HPP_
3 
4 /* =========================================================================
5  Copyright (c) 2010-2016, Institute for Microelectronics,
6  Institute for Analysis and Scientific Computing,
7  TU Wien.
8  Portions of this software are copyright by UChicago Argonne, LLC.
9 
10  -----------------
11  ViennaCL - The Vienna Computing Library
12  -----------------
13 
14  Project Head: Karl Rupp rupp@iue.tuwien.ac.at
15 
16  (A list of authors and contributors can be found in the manual)
17 
18  License: MIT (X11), see file LICENSE in the base directory
19 ============================================================================= */
20 
28 #include "viennacl/forwards.h"
29 #include "viennacl/vector.hpp"
30 
31 #include "viennacl/tools/tools.hpp"
32 
34 
35 namespace viennacl
36 {
52 template<typename NumericT, unsigned int AlignmentV /* see forwards.h for default argument */>
54 {
55 public:
59 
60  ell_matrix() : rows_(0), cols_(0), maxnnz_(0) {}
61 
62  ell_matrix(viennacl::context ctx) : rows_(0), cols_(0), maxnnz_(0)
63  {
64  coords_.switch_active_handle_id(ctx.memory_type());
65  elements_.switch_active_handle_id(ctx.memory_type());
66 
67 #ifdef VIENNACL_WITH_OPENCL
68  if (ctx.memory_type() == OPENCL_MEMORY)
69  {
70  coords_.opencl_handle().context(ctx.opencl_context());
71  elements_.opencl_handle().context(ctx.opencl_context());
72  }
73 #endif
74  }
75 
77  void clear()
78  {
79  maxnnz_ = 0;
80 
82  std::vector<NumericT> host_elements(internal_size1());
83 
84  viennacl::backend::memory_create(coords_, host_coords_buffer.element_size() * internal_size1(), viennacl::traits::context(coords_), host_coords_buffer.get());
85  viennacl::backend::memory_create(elements_, sizeof(NumericT) * internal_size1(), viennacl::traits::context(elements_), &(host_elements[0]));
86  }
87 
88  vcl_size_t internal_size1() const { return viennacl::tools::align_to_multiple<vcl_size_t>(rows_, AlignmentV); }
89  vcl_size_t internal_size2() const { return viennacl::tools::align_to_multiple<vcl_size_t>(cols_, AlignmentV); }
90 
91  vcl_size_t size1() const { return rows_; }
92  vcl_size_t size2() const { return cols_; }
93 
94  vcl_size_t internal_maxnnz() const {return viennacl::tools::align_to_multiple<vcl_size_t>(maxnnz_, AlignmentV); }
95  vcl_size_t maxnnz() const { return maxnnz_; }
96 
97  vcl_size_t nnz() const { return rows_ * maxnnz_; }
99 
100  handle_type & handle() { return elements_; }
101  const handle_type & handle() const { return elements_; }
102 
103  handle_type & handle2() { return coords_; }
104  const handle_type & handle2() const { return coords_; }
105 
106 #if defined(_MSC_VER) && _MSC_VER < 1500 //Visual Studio 2005 needs special treatment
107  template<typename CPUMatrixT>
108  friend void copy(const CPUMatrixT & cpu_matrix, ell_matrix & gpu_matrix );
109 #else
110  template<typename CPUMatrixT, typename T, unsigned int ALIGN>
111  friend void copy(const CPUMatrixT & cpu_matrix, ell_matrix<T, ALIGN> & gpu_matrix );
112 #endif
113 
114 private:
115  vcl_size_t rows_;
116  vcl_size_t cols_;
117  vcl_size_t maxnnz_;
118 
119  handle_type coords_;
120  handle_type elements_;
121 };
122 
123 template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
124 void copy(const CPUMatrixT& cpu_matrix, ell_matrix<NumericT, AlignmentV>& gpu_matrix )
125 {
126  assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
127  assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
128 
129  if (cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0)
130  {
131  //determine max capacity for row
132  vcl_size_t max_entries_per_row = 0;
133  for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
134  {
135  vcl_size_t num_entries = 0;
136  for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
137  ++num_entries;
138 
139  max_entries_per_row = std::max(max_entries_per_row, num_entries);
140  }
141 
142  //setup GPU matrix
143  gpu_matrix.maxnnz_ = max_entries_per_row;
144  gpu_matrix.rows_ = cpu_matrix.size1();
145  gpu_matrix.cols_ = cpu_matrix.size2();
146 
147  vcl_size_t nnz = gpu_matrix.internal_nnz();
148 
150  std::vector<NumericT> elements(nnz, 0);
151 
152  // std::cout << "ELL_MATRIX copy " << gpu_matrix.maxnnz_ << " " << gpu_matrix.rows_ << " " << gpu_matrix.cols_ << " "
153  // << gpu_matrix.internal_maxnnz() << "\n";
154 
155  for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
156  {
157  vcl_size_t data_index = 0;
158 
159  for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
160  {
161  coords.set(gpu_matrix.internal_size1() * data_index + col_it.index1(), col_it.index2());
162  elements[gpu_matrix.internal_size1() * data_index + col_it.index1()] = *col_it;
163  //std::cout << *col_it << "\n";
164  data_index++;
165  }
166  }
167 
168  viennacl::backend::memory_create(gpu_matrix.handle2(), coords.raw_size(), traits::context(gpu_matrix.handle2()), coords.get());
169  viennacl::backend::memory_create(gpu_matrix.handle(), sizeof(NumericT) * elements.size(), traits::context(gpu_matrix.handle()), &(elements[0]));
170  }
171 }
172 
173 
174 
180 template<typename IndexT, typename NumericT, unsigned int AlignmentV>
181 void copy(std::vector< std::map<IndexT, NumericT> > const & cpu_matrix,
183 {
184  vcl_size_t max_col = 0;
185  for (vcl_size_t i=0; i<cpu_matrix.size(); ++i)
186  {
187  if (cpu_matrix[i].size() > 0)
188  max_col = std::max<vcl_size_t>(max_col, (cpu_matrix[i].rbegin())->first);
189  }
190 
191  viennacl::copy(tools::const_sparse_matrix_adapter<NumericT, IndexT>(cpu_matrix, cpu_matrix.size(), max_col + 1), gpu_matrix);
192 }
193 
194 
195 
196 
197 
198 
199 template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
200 void copy(const ell_matrix<NumericT, AlignmentV>& gpu_matrix, CPUMatrixT& cpu_matrix)
201 {
202  assert( (viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
203  assert( (viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
204 
205  if (gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0)
206  {
207  std::vector<NumericT> elements(gpu_matrix.internal_nnz());
209 
210  viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(NumericT) * elements.size(), &(elements[0]));
211  viennacl::backend::memory_read(gpu_matrix.handle2(), 0, coords.raw_size(), coords.get());
212 
213  for (vcl_size_t row = 0; row < gpu_matrix.size1(); row++)
214  {
215  for (vcl_size_t ind = 0; ind < gpu_matrix.internal_maxnnz(); ind++)
216  {
217  vcl_size_t offset = gpu_matrix.internal_size1() * ind + row;
218 
219  NumericT val = elements[offset];
220  if (val <= 0 && val >= 0) // val == 0 without compiler warnings
221  continue;
222 
223  if (coords[offset] >= gpu_matrix.size2())
224  {
225  std::cerr << "ViennaCL encountered invalid data " << offset << " " << ind << " " << row << " " << coords[offset] << " " << gpu_matrix.size2() << std::endl;
226  return;
227  }
228 
229  cpu_matrix(row, coords[offset]) = val;
230  }
231  }
232  }
233 }
234 
235 
241 template<typename NumericT, unsigned int AlignmentV, typename IndexT>
242 void copy(const ell_matrix<NumericT, AlignmentV> & gpu_matrix,
243  std::vector< std::map<IndexT, NumericT> > & cpu_matrix)
244 {
245  if (cpu_matrix.size() == 0)
246  cpu_matrix.resize(gpu_matrix.size1());
247 
248  assert(cpu_matrix.size() == gpu_matrix.size1() && bool("Matrix dimension mismatch!"));
249 
250  tools::sparse_matrix_adapter<NumericT, IndexT> temp(cpu_matrix, gpu_matrix.size1(), gpu_matrix.size2());
251  viennacl::copy(gpu_matrix, temp);
252 }
253 
254 //
255 // Specify available operations:
256 //
257 
260 namespace linalg
261 {
262 namespace detail
263 {
264  // x = A * y
265  template<typename T, unsigned int A>
266  struct op_executor<vector_base<T>, op_assign, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
267  {
268  static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
269  {
270  // check for the special case x = A * x
271  if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
272  {
273  viennacl::vector<T> temp(lhs);
274  viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
275  lhs = temp;
276  }
277  else
278  viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(0));
279  }
280  };
281 
282  template<typename T, unsigned int A>
283  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
284  {
285  static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
286  {
287  // check for the special case x += A * x
288  if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
289  {
290  viennacl::vector<T> temp(lhs);
291  viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
292  lhs += temp;
293  }
294  else
295  viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(1));
296  }
297  };
298 
299  template<typename T, unsigned int A>
300  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
301  {
302  static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
303  {
304  // check for the special case x -= A * x
305  if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
306  {
307  viennacl::vector<T> temp(lhs);
308  viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
309  lhs -= temp;
310  }
311  else
312  viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(-1), lhs, T(1));
313  }
314  };
315 
316 
317  // x = A * vec_op
318  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
319  struct op_executor<vector_base<T>, op_assign, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
320  {
321  static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
322  {
323  viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
324  viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
325  }
326  };
327 
328  // x = A * vec_op
329  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
330  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
331  {
332  static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
333  {
334  viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
335  viennacl::vector<T> temp_result(lhs);
336  viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
337  lhs += temp_result;
338  }
339  };
340 
341  // x = A * vec_op
342  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
343  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
344  {
345  static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
346  {
347  viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
348  viennacl::vector<T> temp_result(lhs);
349  viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
350  lhs -= temp_result;
351  }
352  };
353 
354 } // namespace detail
355 } // namespace linalg
356 
358 }
359 
360 #endif
361 
362 
scalar< typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT< NumericT >::ResultType > value_type
Definition: ell_matrix.hpp:57
vcl_size_t size1() const
Definition: ell_matrix.hpp:91
Helper class implementing an array on the host. Default case: No conversion necessary.
Definition: util.hpp:92
vcl_size_t element_size() const
Definition: util.hpp:112
handle_type & handle2()
Definition: ell_matrix.hpp:103
This class represents a single scalar value on the GPU and behaves mostly like a built-in scalar type...
Definition: forwards.h:227
void clear()
Resets all entries in the matrix back to zero without changing the matrix size. Resets the sparsity p...
Definition: ell_matrix.hpp:77
const handle_type & handle2() const
Definition: ell_matrix.hpp:104
Various little tools used here and there in ViennaCL.
vcl_size_t size1(MatrixType const &mat)
Generic routine for obtaining the number of rows of a matrix (ViennaCL, uBLAS, etc.)
Definition: size.hpp:163
vcl_size_t nnz() const
Definition: ell_matrix.hpp:97
This file provides the forward declarations for the main types used within ViennaCL.
vcl_size_t size2() const
Definition: ell_matrix.hpp:92
void memory_read(mem_handle const &src_buffer, vcl_size_t src_offset, vcl_size_t bytes_to_read, void *ptr, bool async=false)
Reads data from a buffer back to main RAM.
Definition: memory.hpp:261
T max(const T &lhs, const T &rhs)
Maximum.
Definition: util.hpp:59
viennacl::backend::mem_handle handle_type
Definition: ell_matrix.hpp:56
result_of::size_type< MatrixType >::type size2(MatrixType const &mat)
Generic routine for obtaining the number of columns of a matrix (ViennaCL, uBLAS, etc...
Definition: size.hpp:201
vcl_size_t internal_size1() const
Definition: ell_matrix.hpp:88
float NumericT
Definition: bisect.cpp:40
Represents a generic 'context' similar to an OpenCL context, but is backend-agnostic and thus also su...
Definition: context.hpp:39
const handle_type & handle() const
Definition: ell_matrix.hpp:101
vcl_size_t size(VectorType const &vec)
Generic routine for obtaining the size of a vector (ViennaCL, uBLAS, etc.)
Definition: size.hpp:239
vcl_size_t internal_nnz() const
Definition: ell_matrix.hpp:98
Sparse matrix class using the ELLPACK format for storing the nonzeros.
Definition: ell_matrix.hpp:53
friend void copy(const CPUMatrixT &cpu_matrix, ell_matrix< T, ALIGN > &gpu_matrix)
Implementations of operations using sparse matrices.
Adapts a constant sparse matrix type made up from std::vector > to basic ub...
Definition: adapter.hpp:183
std::size_t vcl_size_t
Definition: forwards.h:75
vcl_size_t maxnnz() const
Definition: ell_matrix.hpp:95
vector_expression< const matrix_base< NumericT, F >, const unsigned int, op_row > row(const matrix_base< NumericT, F > &A, unsigned int i)
Definition: matrix.hpp:910
viennacl::memory_types memory_type() const
Definition: context.hpp:76
handle_type & handle()
Definition: ell_matrix.hpp:100
void switch_active_handle_id(memory_types new_id)
Switches the currently active handle. If no support for that backend is provided, an exception is thr...
Definition: mem_handle.hpp:121
viennacl::context context(T const &t)
Returns an ID for the currently active memory domain of an object.
Definition: context.hpp:40
The vector type with operator-overloads and proxy classes is defined here. Linear algebra operations ...
void copy(std::vector< NumericT > &cpu_vec, circulant_matrix< NumericT, AlignmentV > &gpu_mat)
Copies a circulant matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU) ...
Main abstraction class for multiple memory domains. Represents a buffer in either main RAM...
Definition: mem_handle.hpp:89
vcl_size_t raw_size() const
Returns the number of bytes of the currently active buffer.
Definition: mem_handle.hpp:230
Adapts a non-const sparse matrix type made up from std::vector > to basic u...
Definition: adapter.hpp:357
void memory_create(mem_handle &handle, vcl_size_t size_in_bytes, viennacl::context const &ctx, const void *host_ptr=NULL)
Creates an array of the specified size. If the second argument is provided, the buffer is initialized...
Definition: memory.hpp:87
vcl_size_t internal_size2() const
Definition: ell_matrix.hpp:89
void prod_impl(const matrix_base< NumericT > &mat, const vector_base< NumericT > &vec, vector_base< NumericT > &result)
Carries out matrix-vector multiplication.
viennacl::backend::mem_handle & handle(T &obj)
Returns the generic memory handle of an object. Non-const version.
Definition: handle.hpp:41
vcl_size_t size_type
Definition: ell_matrix.hpp:58
vcl_size_t internal_maxnnz() const
Definition: ell_matrix.hpp:94
ell_matrix(viennacl::context ctx)
Definition: ell_matrix.hpp:62