ViennaCL - The Vienna Computing Library  1.7.1
Free open-source GPU-accelerated linear algebra and solver library.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
svd.hpp File Reference

Provides singular value decomposition using a block-based approach. Experimental. More...

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <cmath>
#include "viennacl/matrix.hpp"
#include "viennacl/linalg/opencl/kernels/svd.hpp"
#include "viennacl/linalg/qr-method-common.hpp"

Go to the source code of this file.

Namespaces

 viennacl
 Main namespace in ViennaCL. Holds all the basic types such as vector, matrix, etc. and defines operations upon them.
 
 viennacl::linalg
 Provides all linear algebra operations which are not covered by operator overloads.
 
 viennacl::linalg::detail
 Namespace holding implementation details for linear algebra routines. Usually not of interest for a library user.
 

Functions

template<typename MatrixType , typename VectorType >
void viennacl::linalg::detail::givens_prev (MatrixType &matrix, VectorType &tmp1, VectorType &tmp2, int n, int l, int k)
 
template<typename MatrixType , typename VectorType >
void viennacl::linalg::detail::change_signs (MatrixType &matrix, VectorType &signs, int n)
 
template<typename MatrixType , typename CPU_VectorType >
void viennacl::linalg::detail::svd_qr_shift (MatrixType &vcl_u, MatrixType &vcl_v, CPU_VectorType &q, CPU_VectorType &e)
 
template<typename SCALARTYPE , unsigned int ALIGNMENT>
bool viennacl::linalg::detail::householder_c (viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &A, viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &Q, viennacl::vector< SCALARTYPE, ALIGNMENT > &D, vcl_size_t row_start, vcl_size_t col_start)
 
template<typename SCALARTYPE , unsigned int ALIGNMENT>
bool viennacl::linalg::detail::householder_r (viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &A, viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &Q, viennacl::vector< SCALARTYPE, ALIGNMENT > &D, vcl_size_t row_start, vcl_size_t col_start)
 
template<typename SCALARTYPE , unsigned int ALIGNMENT>
void viennacl::linalg::detail::bidiag (viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &Ai, viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &QL, viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &QR)
 
template<typename SCALARTYPE , unsigned int ALIGNMENT>
void viennacl::linalg::svd (viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &A, viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &QL, viennacl::matrix< SCALARTYPE, row_major, ALIGNMENT > &QR)
 Computes the singular value decomposition of a matrix A. Experimental in 1.3.x. More...
 

Detailed Description

Provides singular value decomposition using a block-based approach. Experimental.

Contributed by Volodymyr Kysenko.

Definition in file svd.hpp.