This tutorial shows how to run multiple instances of a conjugate gradient solver, one instance per GPU.
We start with including the necessary headers:
#ifndef VIENNACL_WITH_OPENCL
#define VIENNACL_WITH_OPENCL
#endif
#include <iostream>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/operation.hpp>
#include <boost/numeric/ublas/operation_sparse.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>
#define VIENNACL_WITH_UBLAS 1
using namespace boost::numeric;
This tutorial uses Boost.Thread for threading. Other threading approaches (e.g. pthreads) also work.
#include <boost/thread.hpp>
This functor represents the work carried out in each thread. It creates the necessary objects, loads the data, and executes the CG solver.
template<typename NumericT>
class worker
{
public:
worker(std::size_t tid) : thread_id_(tid) {}
The functor interface, entry point for each thread.
Set up some ublas objects
ublas::vector<NumericT> rhs;
ublas::vector<NumericT> ref_result;
ublas::compressed_matrix<NumericT> ublas_matrix;
Read system from file. You may also assemble everything on the fly here.
{
std::cout << "Error reading Matrix file" << std::endl;
return;
}
{
std::cout << "Error reading RHS file" << std::endl;
return;
}
{
std::cout << "Error reading Result file" << std::endl;
return;
}
Set up some ViennaCL objects in the respective context. It is important to place the objects in the correct context (associated with each thread)
std::size_t vcl_size = rhs.size();
viennacl::copy(ref_result.begin(), ref_result.end(), vcl_ref_result.begin());
Transfer ublas-matrix to ViennaCL objects sitting on the GPU:
std::stringstream ss;
ss <<
"Result of thread " << thread_id_ <<
" on device " <<
viennacl::ocl::get_context(static_cast<long>(thread_id_)).
devices()[0].name() <<
": " << vcl_result[0] <<
", should: " << ref_result[0] << std::endl;
message_ = ss.str();
}
std::string message() const { return message_; }
private:
std::string message_;
std::size_t thread_id_;
};
In the main routine we create two OpenCL contexts and then use one thread per context to run the CG solver in the functor defined above.
{
{
std::cerr << "Error: No platform found!" << std::endl;
return EXIT_FAILURE;
}
Part 1: Setup first device for first context, second device for second context:
std::vector<viennacl::ocl::device>
const & devices = pf.
devices();
if (devices.size() > 1)
else
Part 2: Now let two threads operate on two GPUs in parallel, each running a CG solver
worker<ScalarType> work_functor0(0);
worker<ScalarType> work_functor1(1);
boost::thread worker_thread_0(boost::ref(work_functor0));
boost::thread worker_thread_1(boost::ref(work_functor1));
worker_thread_0.join();
worker_thread_1.join();
std::cout << work_functor0.message() << std::endl;
std::cout << work_functor1.message() << std::endl;
That's it. Print a success message and exit.
std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;
return EXIT_SUCCESS;
}
Full Example Code
#ifndef VIENNACL_WITH_OPENCL
#define VIENNACL_WITH_OPENCL
#endif
#include <iostream>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/operation.hpp>
#include <boost/numeric/ublas/operation_sparse.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>
#define VIENNACL_WITH_UBLAS 1
using namespace boost::numeric;
#include <boost/thread.hpp>
template<typename NumericT>
class worker
{
public:
worker(std::size_t tid) : thread_id_(tid) {}
void operator()()
{
ublas::vector<NumericT> rhs;
ublas::vector<NumericT> ref_result;
ublas::compressed_matrix<NumericT> ublas_matrix;
{
std::cout << "Error reading Matrix file" << std::endl;
return;
}
{
std::cout << "Error reading RHS file" << std::endl;
return;
}
{
std::cout << "Error reading Result file" << std::endl;
return;
}
std::size_t vcl_size = rhs.size();
std::stringstream ss;
ss <<
"Result of thread " << thread_id_ <<
" on device " <<
viennacl::ocl::get_context(static_cast<long>(thread_id_)).
devices()[0].name() <<
": " << vcl_result[0] <<
", should: " << ref_result[0] << std::endl;
message_ = ss.str();
}
std::string message() const { return message_; }
private:
std::string message_;
std::size_t thread_id_;
};
{
{
std::cerr << "Error: No platform found!" << std::endl;
return EXIT_FAILURE;
}
std::vector<viennacl::ocl::device>
const & devices = pf.
devices();
if (devices.size() > 1)
else
worker<ScalarType> work_functor0(0);
worker<ScalarType> work_functor1(1);
boost::thread worker_thread_0(boost::ref(work_functor0));
boost::thread worker_thread_1(boost::ref(work_functor1));
worker_thread_0.join();
worker_thread_1.join();
std::cout << work_functor0.message() << std::endl;
std::cout << work_functor1.message() << std::endl;
std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;
return EXIT_SUCCESS;
}