ViennaCL - The Vienna Computing Library  1.7.1
Free open-source GPU-accelerated linear algebra and solver library.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
blas3.cpp

In this tutorial it is shown how BLAS level 3 functionality in ViennaCL can be used.

We begin with defining preprocessor constants and including the necessary headers.

//disable debug mechanisms to have a fair comparison with ublas:
#ifndef NDEBUG
#define NDEBUG
#endif
// System headers
#include <iostream>
// ublas headers
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/lu.hpp>
#include <boost/numeric/ublas/io.hpp>
// Must be set if you want to use ViennaCL algorithms on ublas objects
#define VIENNACL_WITH_UBLAS 1
// ViennaCL headers
#define BLAS3_MATRIX_SIZE 400
using namespace boost::numeric;

Later in this tutorial we will iterate over all available OpenCL devices. To ensure that this tutorial also works if no OpenCL backend is activated, we need this dummy-struct.

#ifndef VIENNACL_WITH_OPENCL
struct dummy
{
std::size_t size() const { return 1; }
};
#endif

We don't need additional auxiliary routines, so let us start straight away with main():

/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the PDF manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
//disable debug mechanisms to have a fair comparison with ublas:
#ifndef NDEBUG
#define NDEBUG
#endif
// System headers
#include <iostream>
// ublas headers
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/lu.hpp>
#include <boost/numeric/ublas/io.hpp>
// Must be set if you want to use ViennaCL algorithms on ublas objects
#define VIENNACL_WITH_UBLAS 1
// ViennaCL headers
#define BLAS3_MATRIX_SIZE 400
using namespace boost::numeric;
#ifndef VIENNACL_WITH_OPENCL
struct dummy
{
std::size_t size() const { return 1; }
};
#endif
int main()
{
typedef float ScalarType;
double exec_time;
ublas::matrix<ScalarType> ublas_A(BLAS3_MATRIX_SIZE, BLAS3_MATRIX_SIZE);
ublas::matrix<ScalarType, ublas::column_major> ublas_B(BLAS3_MATRIX_SIZE, BLAS3_MATRIX_SIZE);
ublas::matrix<ScalarType> ublas_C(BLAS3_MATRIX_SIZE, BLAS3_MATRIX_SIZE);
ublas::matrix<ScalarType> ublas_C1(BLAS3_MATRIX_SIZE, BLAS3_MATRIX_SIZE);
for (unsigned int i = 0; i < ublas_A.size1(); ++i)
for (unsigned int j = 0; j < ublas_A.size2(); ++j)
ublas_A(i,j) = randomNumber();
for (unsigned int i = 0; i < ublas_B.size1(); ++i)
for (unsigned int j = 0; j < ublas_B.size2(); ++j)
ublas_B(i,j) = randomNumber();
//viennacl::ocl::set_context_device_type(0, viennacl::ocl::gpu_tag()); //uncomment this is you wish to use GPUs only
std::cout << "--- Computing matrix-matrix product using ublas ---" << std::endl;
timer.start();
ublas_C = ublas::prod(ublas_A, ublas_B);
exec_time = timer.get();
std::cout << " - Execution time: " << exec_time << std::endl;
std::cout << std::endl << "--- Computing matrix-matrix product on each available compute device using ViennaCL ---" << std::endl;
#ifdef VIENNACL_WITH_OPENCL
std::vector<viennacl::ocl::device> devices = viennacl::ocl::current_context().devices();
#else
dummy devices;
#endif
for (std::size_t device_id=0; device_id<devices.size(); ++device_id)
{
#ifdef VIENNACL_WITH_OPENCL
std::cout << " - Device Name: " << viennacl::ocl::current_device().name() << std::endl;
#endif
viennacl::copy(ublas_A, vcl_A);
viennacl::copy(ublas_B, vcl_B);
vcl_C = viennacl::linalg::prod(vcl_A, vcl_B);
timer.start();
vcl_C = viennacl::linalg::prod(vcl_A, vcl_B);
exec_time = timer.get();
std::cout << " - Execution time on device (no setup time included): " << exec_time << std::endl;
viennacl::copy(vcl_C, ublas_C1);
std::cout << " - Checking result... ";
bool check_ok = true;
for (std::size_t i = 0; i < ublas_A.size1(); ++i)
{
for (std::size_t j = 0; j < ublas_A.size2(); ++j)
{
if ( std::fabs(ublas_C1(i,j) - ublas_C(i,j)) / ublas_C(i,j) > 1e-4 )
{
check_ok = false;
break;
}
}
if (!check_ok)
break;
}
if (check_ok)
std::cout << "[OK]" << std::endl << std::endl;
else
std::cout << "[FAILED]" << std::endl << std::endl;
}
std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;
return EXIT_SUCCESS;
}